Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

An Effective Optimization Strategy for Structural Weight Reduction

2010-04-12
2010-01-0647
Multidisciplinary design optimization (MDO) methods are commonly used for weight reduction in automotive industry. The design variables for MDO are often selected based on critical parts, which usually are close to optimal after many design iterations. As a result, the real weight reduction benefit may not be fully realized due to poor selection of design parameters. In addition, most applications require running design of experiments (DOE) to explore the full design space and to build response surfaces for optimization. This approach is often too costly if too many design variables are simultaneously considered. In this research, an alternative approach to address these issues is presented. It includes two optimization phases. The first phase uses critical parts for design iterations and the second phase use non-critical for weight reduction. A vehicle body structure is used to demonstrate the proposed strategy to show its effectiveness.
Technical Paper

The New Ford 6.7L V-8 Turbocharged Diesel Engine

2010-04-12
2010-01-1101
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbocharged Diesel, and code named "Scorpion" has been designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. It incorporates the latest design technology to meet 2010 model year emission regulations for both chassis and dynamometer-based certifications, and is compatible with up to B20 biodiesel fuel. The engine is an entirely new 90 degree V-8 design featuring inboard exhaust, piezo common rail fuel injection, a new dual compressor wheel turbocharger, and dual loop cooling systems. The 6.7L is Ford's first diesel engine designed for the North American pickup and light commercial truck market.
Technical Paper

Modeling Water Condensation in Exhaust A/T Devices

2010-04-12
2010-01-0885
Ignoring the impact of water condensation leads to incorrect temperature simulation during cold start, and this can lead to questions being raised about the overall accuracy of aftertreatment simulation tools for both temperature and emission predictions. This report provides a mathematical model to simulate the condensation and evaporation of water in exhaust after-treatment devices. The simulation results are compared with experimental data. Simulation results show that the temperature profiles obtained using the condensation model are more accurate than the profiles obtained without using the condensation model. The model will be very useful in addressing questions that concern the accuracy of the simulation tool during cold-start and heating up of catalysts, which accounts for the conditions where tailpipe emission issues are most significant.
Technical Paper

Methods for Modeling and Code Generation for Custom Lookup Tables

2010-04-12
2010-01-0941
Lookup tables and functions are widely used in real-time embedded automotive applications to conserve scarce processor resources. To minimize the resource utilization, these lookup tables (LUTs) commonly use custom data structures. The lookup function code is optimized to process these custom data structures. The legacy routines for these lookup functions are very efficient and have been in production for many years. These lookup functions and the corresponding data structures are typically used for calibration tables. The third-party calibration tools are specifically tailored to support these custom data structures. These tools assist the calibrators in optimizing the control algorithm performance for the targeted environment for production. Application software typically contains a mix of both automatically generated software and manually developed code. Some of the same calibration tables may be used in both auto generated and hand-code [ 1 ] [ 2 ].
Technical Paper

Problem Analysis with the Aid of Cause and Effect Diagrams in the Automobile Industry

2010-04-12
2010-01-0914
Nature does not know any problems! All problems are created by people who either know or do not know what they are doing. Therefore problems can only be solved by humans. Modern vehicles consist of more than 10.000 single parts which are connected by a huge amount of interfaces. In order to fulfill the lifetime requirement for all systems many theoretical and physical investigations are required in the development phase. The task of this article is to describe a simple analysis method - the Cause and Effect Diagram (CE Diagram) to identify and visualize problems during the product development as well as during the manufacturing process. The original application of the forties will be enhanced by some new aspects.
Technical Paper

Experimental and Computational Analysis of Impact of Self Recirculation Casing Treatment on Turbocharger Compressor

2010-04-12
2010-01-1224
Self recirculation casing treatment has been showed to be an effective technique to extend the flow range of the compressor. However, the mechanism of its surge extension on turbocharger compressor is less understood. Investigation and comparison of internal flow filed will help to understand its impact on the compressor performance. In present study, experimentally validated CFD analysis was employed to study the mechanism of surge extension on the turbocharger compressor. Firstly a turbocharger compressor with replaceable inserts near the shroud of the impeller inlet was designed so that the overall performance of the compressor with and without self recirculation casing treatment could be tested and compared. Two different self recirculation casing treatments had been tested: one is conventional self recirculation casing treatment and the other one has deswirl vanes inside the casing treatment passage.
Technical Paper

FEA Predictions and Test Results from Magnesium Beams in Bending and Axial Compression

2010-04-12
2010-01-0405
Finite element analysis (FEA) predictions of magnesium beams are compared to load versus displacement test measurements. The beams are made from AM60B die castings, AM30 extrusions and AZ31 sheet. The sheet and die cast beams are built up from two top hat sections joined with toughened epoxy adhesive and structural rivets. LS-DYNA material model MAT_124 predicts the magnesium behavior over a range of strain rates and accommodates different responses in tension and compression. Material test results and FEA experience set the strain to failure limits in the FEA predictions. The boundary conditions in the FEA models closely mimic the loading and constraint conditions in the component testing. Results from quasi-static four-point bend, quasi-static axial compression and high-speed axial compression tests of magnesium beams show the beam's behavior over a range of loadings and test rates. The magnesium beams exhibit significant material cracking and splitting in all the tests.
Technical Paper

Ford Motor Companys' new Torqshift 6 Automatic Transmission for Super Duty F250-F550 Truck

2010-04-12
2010-01-0859
Ford developed the 6R140 TorqShift six-speed transmission for the Ford F-series SuperDuty trucks. The 6R140 transmission is specifically designed to manage the increased torque produced by the 6.7-liter Power Stroke V-8 turbocharged diesel engine. It is also matched with the 6.2-liter V-8 gasoline engine. By design, the new 6R140 transmission seamlessly delivers the enormous low-rpm torque produced by the new diesel engine and efficiently manages the higher rpm of the new gasoline engine.
Technical Paper

Deactivation of Cu/Zeolite SCR Catalyst under Lean-Rich Aging Conditions

2010-04-12
2010-01-1180
A lean-rich hydrothermal aging was used to study the deactivation of Cu-zeolite SCR catalyst that has enhanced stability. Impact of DOC upstream on the SCR catalyst during the lean-rich aging was also investigated. The LR hydrothermal aging was conducted with the presence of hydrocarbon, CO and H₂ at different O₂ levels. It was found that the SCR catalyst was active for the oxidation of CO, H₂ and hydrocarbon, resulting in significant exotherm across the catalyst. In addition to hydrothermal aging, reductive aging, especially the presence of H₂ in the aging gas stream without O₂ presence during the L-R aging, might also contribute to the Cu/zeolite SCR catalyst deactivation. The impacts of DOC upstream on Cu/zeolite SCR catalysts depended on the aging temperatures. At lower aging temperature, the uncompleted oxidation of hydrocarbon and CO on the DOC might cause steam reforming and water-gas shift reactions on the DOC to form reductive gas stream.
Technical Paper

Front suspension LCA bushing optimization

2010-10-06
2010-36-0248
When considering ride comfort and precision there are lots of components in the vehicle suspensions that have influence in this behavior and some ride occurrences (mainly higher frequencies) are rubber bushing responsibility but due their compliance, other vehicle attributes, steering and handling, can be affected. So the correct components tuning can maintain or improve vehicle attributes to address desired brand DNA and vehicle its specific needs. These studies were done considering the elastokinematics of front axle only due need of improve its comfort concerning higher frequencies (impacts and harshness). In addiction, correlation between subjective evaluation and objective data acquisition/post processing is desirable to optimize development time. Based in subjective directional, the activities time was reduced and final configuration reached faster.
Technical Paper

Simulating and Correlation of Vehicle Startability on Grade Maneuvers

2010-10-06
2010-36-0325
The behavior knowledge of the vehicle on uphill maneuvers - startability on grade, is an important metric for sizing powertrain components, such as the engine torque, clutch, first and reverse gear ratios, final drive and tire sizes. During the uphill maneuver, all components of the powertrain are subject to efforts that determine the vehicle performance in this condition. The analysis of this maneuver, for a front-wheel-drive vehicle, is evaluated in this article, through a correlation of a computer program developed in Matlab-Simulink, with experimental measurements performed on the vehicle at the track, becoming an important tool for analysis of passenger vehicles subject to these conditions present on Brazilian streets.
Technical Paper

Contribution of sound package components to airborne attenuation

2010-10-06
2010-36-0328
In South America and other emerging markets sound package development is limited by the cost and weight of its components. Reaching the right balance between cost and a good NVH performance provides an important competitive advantage, therefore any achieved design opportunities can be replicated to other vehicle lines and markets. In this work the main noise transmission paths are verified by evaluating the contribution of sound package components to noise attenuation in two cases, initially from the tire contact patch through vehicle body to a number of positions within the vehicle interior and, next, from the engine compartment, by placing a High Frequency Sound Source (HFSS) at engine faces to the same vehicle interior positions. The main objective is to optimize sound package distribution and to prioritize which areas should have the sound package reinforced in order to improve Tire and Engine noise reduction.
Technical Paper

Gear Lever Sound Quality Evaluation

2010-10-06
2010-36-0369
Vehicle sound quality has become lately one of the main topics of study in the automotive industry which is associated with the quality of the product. Into the automotive development the static operational sound quality is one of the attributes that is considered. The sounds produced through the manipulation of items like the doors and interior components (windows, seats, safety belts, windshield wipers, and others) generated for safety and warning purposes are items related to the vehicle quality for customers. Those sounds based on relative level of intensity, duration, harmony and degree of contribution are elements that the customer will retain in mind, an overall quality impression. The sound produced during gear lever manipulation is important to the customer in order that the event should transmit low intensity and robust and soft impression.
Technical Paper

An Assessment of Vehicle Side-Window Defrosting and Demisting Process

2001-03-05
2001-01-0289
The thermal comfort of passengers within a vehicle is often the main objective for the climate control engineer; however, the need to maintain adequate visibility through the front and side windows of a vehicle is a critical aspect of safe driving. This paper compares the performance of the side window defrosting and demisting mechanism of several current model vehicles. The study highlights the drawbacks of current designs and points the way to improved passive defrosting mechanisms. The investigation is experimental and computational. The experiments are carried out using full-scale current vehicle models. The computational study, which is validated by the experiments, is used to perform parametric investigation into the side window defrosters performance. The results show that the current designs of the side-defroster nozzles give maximum airflow rates in the vicinity of the lower part of the window, which yields unsatisfactory visibility.
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

2001-03-05
2001-01-0510
The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

Comparison of Performance between Several Vehicle Windshield Defrosting and Demisting Mechanisms

2001-03-05
2001-01-0582
The safety and comfort aspects of passenger cars are significant sales argument and have become a topic of rising importance during the development process of a new car. The objective of this study is to compare the performance of several current model vehicles, highlight the drawbacks of current defrosting/demisting systems and point the way to improved passive mechanisms. The investigation is experimental. The experiments are carried out using full-scale current vehicle models. The results show that the current designs of the defroster nozzle give maximum airflow rates in the vicinity of the lower part of the windshield, which decrease gradually towards the upper parts of the windshield. This hinders and limits the vision of the driver, particularly at the top of the windshield, which can be uncomfortable and indeed dangerous.
Technical Paper

A New FEA Method for the Evaluation of a Body Joint

2001-03-05
2001-01-0758
A finite element analysis method has been developed to assess the design of an automobile body joint. The concept of the coefficient of joint stiffness and the force distribution ratio are proposed accordingly. The coefficient of joint stiffness reveals whether a joint is stiff enough compared to its joining components. In addition, these parameters can be used to estimate the potential and the effectiveness for any further improvement of the joint design. The modeling and analysis of the proposed process are robust. The coefficient of joint stiffness could be further developed to serve as the joint design target.
Technical Paper

Modeling the Effect of Substrate Cell Shape on Conversion in Monolith Catalysts

2001-03-05
2001-01-0932
Mass transfer limitations from the bulk gas phase to the surface of the catalyst as well as mass transfer limitations within the washcoat itself have important effects on conversion in washcoated monolith catalysts. These factors depend upon the shape of the channel as well as the loading of washcoat material. This paper outlines a method to describe the washcoat distribution profile for different channel shapes and washcoat loadings. This allows for prediction of effectiveness factors and bulk mass transfer coefficients as a function of cell geometry and washcoat loading for the oxidation of propane. It was found that differences in the diffusion limitations within the washcoat control conversion in the catalyst more than differences in bulk mass transfer rates when comparing different cell shapes. The results show that optimum washcoat loadings exist for the geometry of each cell, and that these optimum loadings are a function of catalyst temperature.
Technical Paper

Optimum Gap Design And Durability Analysis of Catalytic Converter Assembly

2001-03-05
2001-01-0942
A method to predict gap distribution, can deformation and mounting force of catalytic converter during assembling and operation cycles has been developed using ABAQUS contact algorithm with user subroutine for material properties. Inherent in the methodology is the constitutive model for both vermiculite mat and wire mesh mounting materials, which is able to describe their nonlinear and thermal behaviors and shows good agreement with test results. A design optimization procedure is presented to achieve uniform gap design of can and substrate. The technology will enable engineers to generate robust converter can designs, substrate shape and stamping tools for minimum manufacturing failure rate and maximum durability performance once a mounting material is selected.
Technical Paper

Correlating Stressed Environmental Testing of Structural Composites to Service

2001-03-05
2001-01-0094
A compact in-situ tensile stress fixture was designed for the study of the combined effects of stress and automotive environments on structural glass fiber-reinforced composite materials. With this fixture, a standardized 300 hour laboratory screening test was developed to compare the residual property loss of composite materials due to concurrent exposure to stress and environment. It is of great importance that the data gathered in the laboratory have correlation to on-vehicle (in-service) performance, and that both lab and real world data be taken with a test system (in-situ test fixtures) capable of providing accurate and consistent results under either test condition.
X